

COLUMBIA RIVER TEMPERATURE TOTAL MAXIMUM DAILY LOAD

TECHNICAL ANALYSIS

Why Develop a Model?

- To determine important processes that affect river temperature
- To quantify the relative impact of different human activities on river temperature
- To run "what-if" scenarios

Goals of Model Development

- Develop a temperature model that:
 - accurately simulates river temperatures
 - supports a TMDL analysis
- Keep it non-proprietary, computationally simple and flexible
- Conduct Peer Review
- Build interface and guide for other users

Model Name

- River
- Basin
- Model developed in EPA Region
- 10
- RBM10 is written in Fortran code and can be adapted to simulate any large scale river

Scale of Analysis - Regional

Geographic Boundaries of Model

- COLUMBIA RIVER from International border to Bonneville Dam
 - extension to Astoria in progress
- SNAKE RIVER from Brownlee Dam to confluence with Columbia
- CLEARWATER RIVER from Orofino to confluence with Snake

BACKGROUND CONSIDERATIONS

Water Quality Standards

- Oregon and Washington Standards for Temperature require evaluation of natural conditions
 - Need to estimate temperatures in both impounded and un-impounded conditions

System Features

- Run-of-River Reservoirs
 - Vertical temperature stratification relatively low
 - Water surface elevation is relatively constant
 - points to potential utility of 1-D model with constant impoundment elevation
 - previous 1-D studies of Columbia River

Available Data

- On the one hand...
 - Long term records are available for meteorology, tributary flow, and water temperature, enabling:
 - long term simulations
 - evaluation of system variability, and
 - comparison of simulations to monitored temps

Data Limitations

- On the other hand...
 - Mainstem Temperature Monitoring
 - Monitoring at Dams Not Designed for Assessment of River Temperature
 - Limited Quality Control/Quality Assurance
 - Tributary Temperature Monitoring
 - Discontinuous Record
 - Unknown Quality Control/Quality Assurance
 - Meteorology
 - Limited Geographical Coverage

HOW TO ESTIMATE RIVER TEMPERATURE?

Two Ways to Estimate Temperatures

- River Temperature Measurements (Measurement Model)
 - Long term scroll case readings at dams
 - Scarce data from unimpounded river
- Energy Budget (Process Model)

MEASUREMENT MODEL

Concept for Measurement Model

- Cross-sectionally averaged river temperatures can be estimated based upon:
 - Temperature Measurements at Dams (Scroll Case, Forebay, and/or Tailrace)

Comparison of Daily Water Temperatures at the Scroll Case, Forebay and Tailrace of Ice Harbor Dam, 1994

MEASUREMENT MODEL

TRUE STATE OF TEMPERATURE **TEMPERATURE**

<u>MEASUREMENT</u>

MEASUREMENT ERROR

n

Why Do We Need Process Model?

- We need to estimate temperatures under un-impounded conditions for which measurement data is scarce
- We have conflicting measurements
- We do not have measurements at all river locations of interest
- · We need to estimate influence of different sources

Concept for Process Model

- Cross-sectionally averaged river temperatures can be estimated based upon:
 - river flow and geometry
 - surface heat exchange, and
 - advected river and point source heat

ONE-DIMENSIONAL ENERGY BUDGET MATHEMATICAL MODEL

$$\frac{d(VT)}{dt} = Q_{in} T_{in} - Q_{out} T_{out}$$

$$\frac{CHANGE}{INFLOW} = \frac{INFLOW}{ENERGY} = \frac{OUTFLOW}{ENERGY}$$

$$+ Q_{trib} T_{trib} + \frac{q_{surf} A_{surf}}{r C_{p}} + e$$

$$\frac{TRIBUTARY}{ENERGY} = \frac{SURFACE\ ENERGY}{EXCHANGE} = \frac{MODEL}{ERROR}$$

General

- System Topology
- Latitude of Site
- Day of the Year

River Geometry - Existing and Unimpounded

- Cross-sectional Area
- Width of River
- River Mile

Main Stem

- Main Stem Boundary Inflows
- Main Stem Boundary Temperatures

Tributary

- Tributary and Point Source Flows
- Tributary and Point Source Temperatures

Meteorology

- Cloud Cover
- Dry Bulb Temperature
- Wind Speed
- Vapor Pressure of the Air near the Water Surface
- Atmospheric Pressure

AVAILABLE INFORMATION

Type of Data	EPA's Available Information in Study Area
Tributary Temperature	19 Stations 30 Year Record - Discontinuous - Grab Samples
Mainstem Temperatures	Scroll Case, Tailrace, Forebay of USACE Dams 30 Year Record – Discontinuous – Daily Obs.
River Geometry	Existing Conditions: Approx. 100 profiles Natural Conditions: Approx. 150 profiles
Flow	22 USGS Gages 30 Year Record – Continuous – Daily Observations
Meteorology	3 First Order Stations, 2 Local Air Temp Stations 30 Year Record – Continuous – Hourly Observations

Data Retrieval & Formatting Challenge

- Data Cornucopia
 - large scale, many monitoring locations
 - voluminous data
 - numerous formats, sample types, etc.
 - data gaps
 - outliers
- Making Data Usable for RBM10
 - adhoc utilities for formatting and calculating necessary input data

IMPORTANT ASSUMPTIONS

Important Assumptions

- Meteorology
 - Described by five regional weather stations
- Mainstem Flow
 - Constant elevation for impounded reaches except
 Grand Coulee
 - Leopold relations developed from gradually-varied flow methods for un-impounded reaches
- Tributary Temperatures
 - Mohseni relations developed from local air temperature and weekly/monthly river monitoring

Important Assumptions

Groundwater

 Hyporheic flow does not significantly change the cross-sectionally averaged temperature in un-impounded conditions

Measurement Model

 Tailrace monitoring represents best available measure of cross-sectionally averaged temperatures

MODEL DEVELOPMENT

TERMINOLOGY

Identification	Selection
Calibration n	Parameter Estimatio
Verification	Acceptance

MODEL SELECTION

- 1-Dimensional, Time Dependent
- Estimates of Water Temperature from Process and Measurement Models Treated as Random Variables
- Mixed Lagrangian-Eulerian solution technique "Reverse Particle Tracking"
 - reduces error due to numerical dispersion
 - reduces numerical instability
 - reduces computational burden of uncertainty evaluation

PARAMETER ESTIMATION

- Identify parameters that govern rates of energy transfer in the system
 - Some are well known (e.g., solar declination)
 - Some are less well known (e.g., evaporation rates)
- Two parameters that are less known are estimated
 - evaporation rates
 - assignment of area covered by 5 meteorological stations

ACCEPTANCE CRITERIA

- Estimates for evaporation rates and meteorological station assignment are varied to satisfy criteria for model acceptance
- Acceptance criteria:
 - solutions are unbiased; and
 - error is uncorrelated in time

MODEL APPLICATION AND ACCEPTANCE

RBM10 Results for 1990-1994

Location	Mean Difference (Obs-Sim)	Standard Deviation
Snake River @lce Harbor	0.05 deg C	1.2
Columbia River @Bonneville	0.04 deg C	1.3

Error Estimates from Other Studies

RISLEY (1997) - Tualatin River

Max Mean Difference = 3 Deg C Mostly < 1 Deg C

• BATTELLE-MASS1 (2001) - Columbia River

RMS Error = 0.59 - 1.52 Deg C

HDR/PORTLAND STATE/IPC (1999) - Snake River

AME = 0.6-2.3 Deg C (1992 data)

AME = 0.5-2.0 Deg C (1995 data)

CHEN (1996) - Grande Ronde River

Error = -2.20 - 8.28 Deg C (Summer Max)

Error = -1.21 - 7.69 Deg C (Avg 7-day Max)